มหาวิทยาลัยบูรพา

หลักสูตรวิศวกรรมศาสตรามหาบัณฑิต สาขาวิศวกรรมเคมี

พ.ศ. 2564

มหาวิทยาลัยบูรพา

Future Co-creation area • • Pneumatic Center • EEC Automation Park

Central Laboratory

Civil Engineering Development and Solutions Center
Center of Construction Technology and Traffic Management
Sustainable Urban System Engineering and Transport Center
Center of Materials Testing in Civil Engineering

Co-working Space Calibration Center

EV Conversion Center

Advance Innovation Center

CHEMICAL ENGINEERING

กรรมการบริหารหลักสูตร

ปริญญา

วิศวกรรมศาสตรมหาบัณฑิต (วิศวกรรมเคมี)

วศ.ม. (วิศวกรรมเคมี)

Master of Engineering (Chemical Engineering)

M.Eng. (Chemical Engineering)

จำนวนหน่วยกิต

ตลอดหลักสูตร

• แผน ก แบบ ก1 ใม่น้อยกว่า 36 หน่วยกิต

แผน ก แบบ ก2
 ไม่น้อยกว่า 36 หน่วยกิต

โครงสร้างหลักสูตร แผน ก แบบ ก1

1) หมวดวิชาบังคับ	ไม่นับหน่วยกิต	
<u>รายวิชาบังคับทั่วไป</u>		
50268164 ระเบียบวิธีวิจัยขั้นสูงทางวิศวกรรมเคมี	2(1-2-3)	
Advanced Research Methods in Chemical Engineering		
50268264 สัมมนาทางวิศวกรรมเคมี	1(0-2-1)	
Chemical Engineering Seminar		
2) วิทยานิพนธ์	จำนวน 36 หน่วยกิต	
50259864 วิทยานิพนธ์	36(0-0-108)	
Thesis		

โครงสร้างหลักสูตร แผนก แบบ ก2

1) หมวดวิชาบังคับ	จำนวน 12 หน่วยกิต	
รายวิชาบังคับทั่วไป	จำนวน 3 หน่วยกิต	
50268164 ระเบียบวิธีวิจัยขั้นสูงทางวิศวกรรมเคมี	2(1-2-3)	
Advanced Research Methods in Chemical Engineering		
50268264 สัมมนาทางวิศวกรรมเคมี	1(0-2-1)	
Chemical Engineering Seminar		
รายวิชาแกนบังคับ	จำนวน 9 หน่วยกิต	
50260164 อุณหพลศาสตร์ขั้นสูงของระบบทางเคมี	3(3-0-6)	
Advanced Thermodynamics for Chemical Systems		
50260264 ปรากฏการณ์การถ่ายโอนขั้นสูงในกระบวนการทางเคมี	3(3-0-6)	
Advanced Transport Phenomena in Chemical Processes		
50260364 วิศวกรรมปฏิกิริยาเคมีขั้นสูง	3(3-0-6)	
Advanced Chemical Reaction Engineering		

2) หมวดวิชาเลือก ไม่น้อยกว่า	จำนวน 6 หน่วยกิต
นิสิตสามารถเลือกลงทะเบียนรายวิชาไม่น้อยกว่า 2 รายวิชา ดังต่อไปนี้	
(1) <u>กลุ่มวิชากระบวนการทางด้านวิศวกรรมเคมี</u>	
50261164 การวิเคราะห์ลักษณะเฉพาะของวัสดุขั้นสูง	3(3-0-6)
Advanced Materials Characterization	
50261264 พลังงานสะอาด	3(3-0-6)
Clean Energy	
50261364 เคมีคอลลอย์และพื้นผิวประยุกต์	3(3-0-6)
Applied Surface and Colloid Chemistry	
50261464 แบบจำลองและการวิเคราะห์กระบวนการ	3(3-0-6)
Process Analysis and Simulation	
50261564 วัสดุสำหรับการใช้งานเฉพาะด้าน	3(3-0-6)
Materials for Special Applications	
50261664 วิศวกรรมปิโตรเลียมและปิโตรเคมี	3(3-0-6)
Petroleum and Petrochemical Engineering	
50261764 วิศวกรรมพอลิเมอร์	3(3-0-6)
Polymer Engineering	
50261864 คณิตศาสตร์ขั้นสูงสำหรับวิศวกรรมเคมี	3(3-0-6)
Advanced Mathematics for Chemical Engineering	

(2) <u>กลุ่มวิชาตามพื้นฐานงานวิทยานิพนธ์</u>	
50262164 หัวข้ออุตสาหกรรมพิเศษทางวิศวกรรมเคมี	3(0-9-3)
Industrial Special Topics in Chemical Engineering	
50262264 หัวข้อพิเศษทางวิศวกรรมเคมี	3(3-0-6)
Special Topics in Chemical Engineering	
50262364 หัวข้อพิเศษทางวิศวกรรมสิ่งแวดล้อม	3(3-0-6)
Special Topics in Environmental Engineering	
50262464 หัวข้อพิเศษทางการบริหารจัดการในอุตสาหกรรม	3(3-0-6)
Special Topics in Operation Management in Industry	
50262564 หัวข้อพิเศษทางการจัดการพลังงาน	3(3-0-6)
Special Topics in Energy Management	
50262664 หัวข้อพิเศษทางวิศวกรรมชีวเคมี	3(3-0-6)
Special Topics in Biochemical Engineering	
50262764 หัวข้อพิเศษทางวัสดุวิศวกรรม	3(3-0-6)
Special Topics in Material Engineering	
50262864 การควบคุมแบบตรรกะและระบบอัตโนมัติ	3(3-0-6)
Programmable Logic Control and Automation	
50262964 อินเตอร์เน็ตของสรรพสิ่งสำหรับวิศวกรรมเคมี	3(3-0-6)
Internet of Things for Chemical Engineering	

3) วิทยานิพนธ์ 50259964. วิทยานิพนธ์ Thesis

จำนวน 18 หน่วยกิต

18(0-0-54)

คุณสมบัติของผู้เข้าศึกษา

เป็นผู้สำเร็จการศึกษาปริญญาตรีสาขาวิชาวิศวกรรมเคมีหรือ เทียบเท่า โดยสำหรับแผน ก1 ต้องมีเกรดเฉลี่ยไม่น้อยกว่า 3.00 สำหรับแผน ก2 ต้องมีเกรดเฉลี่ยไม่น้อยกว่า 2.00

กรณีผู้เข้าศึกษาไม่ได้สำเร็จการศึกษาระดับปริญญาตรีในสาขาวิชาตามระบุ ต้องได้รับความ เห็นชอบจากคณะกรรมการบริหารหลักสูตร ทั้งนี้ ผู้เข้าศึกษาต้องลงทะเบียนเรียนรายวิชาปรับ พื้นฐาน ตามคำแนะนำของคณะกรรมการบริหารหลักสูตรและต้องได้ระดับคะแนน S

เกณฑ์การจบการศึกษา

แผน ก แบบ ก1 อย่างน้อยได้รับการตีพิมพ์ในวารสารระดับชาติหรือ นานาชาติที่มีคุณภาพตามประกาศคณะกรรมการอุดมการศึกษา

แผน ก แบบ ก2 อย่างน้อยได้รับการตีพิมพ์ในวารสารระดับชาติหรือนานาชาติ ที่มีคุณภาพตามประกาศคณะกรรมการอุดมการศึกษา หรือนำเสนอต่อที่ประชุม วิชาการที่ได้รับการตีพิมพ์ในรายงานสืบเนื่อง (proceedings)

อาจารย์ประจำหลักสูตร		
รศ.ดร.	ปิยฉัตร วัฒนชัย	Ph.D. (Chemical Engineering), Cambridge University, UK
รศ.ดร.	ไพลิน เงาตระการวิวัฒน์	Ph.D. (Applied Chemistry), University of Tokyo, Japan
ผศ.ดร.	วชิรา ดาวสุด	วศ.ด. (วิศวกรรมเคมี), Chulalongkorn University, TH
รศ.ดร.	สร้อยพัทธา สร้อยสุวรรณ	วศ.ด. (วิศวกรรมเคมี), Chulalongkorn University, TH
รศ.ดร.	แดง แซ่เบ้	วศ.ด. (วิศวกรรมเคมี), Chulalongkorn University, TH
รศ.ดร.	วิทวัส แจ้งเอี่ยม	ปร.ด. (ชีวเคมี), Mahidol University, TH
ผศ.ดร.	นพพล วีระนพนันท์	Ph.D. (Chemical Engineering), Massachusetts Institute of Technology, USA
ผศ.ดร.	เสฎฐกรณ์ อุปเสน	D.Eng. (Chimie Physique et Chimie Analytique), Université Pierre et Marie Curie, France
ผศ.ดร.	มัทนา สันทัสนะโชค	D.Eng. (Development Engineering), Tokyo Institute of Technology, Japan
ผศ.ดร.	ศุภศิลป์ ทวีศักดิ์	Ph.D. (Chemical Engineering), The University of Queensland, Australia
ผศ.ดร.	ศรีสุดา นิเทศน์ธรรม	ปร.ด.(เทคโนโลยีสิ่งแวดล้อม), KMUTT, TH
ดร.	เจริญ ชินวานิชย์เจริญ	Ph.D. (Applied Science), Kanazawa University, Japan

หลักสูตรปรัชญาดุษฎีบัณฑิต สาขาวิศวกรรมเคมี

แผนการศึกษา แบบที่ 1 (ทำดุษฎีนิพนธ์อย่างเดียว) แบบ 1.1 จบโท หน่วยกิต 48 เวลา 3 ปี ตีพิมพ์วารสารระดับชาติ/นานาชาติ 2 ฉบับ แบบ 1.2 จบตรี หน่วยกิต 72 เวลา 4 ปี

แผนการศึกษา แบบที่ 2 (มีเรียนรายวิชา) แบบ 2.1 จบโท หน่วยกิต 48 เวลา 3 ปี ตีพิมพ์วารสารระดับชาติ/นานาชาติ 1 ฉบับ แบบ 2.2 จบตรี หน่วยกิต 72 เวลา 4 ปี

เกณฑ์การรับเข้าแผนการศึกษา แบบที่ 1 (ทำดุษฏินิพนธ์อย่างเดียว) แบบ 1.1 จบโท เกรดเฉลี่ยไม่น้อยกว่า 3.5 แบบ 1.2 จบตรี เกรดเฉลี่ยไม่น้อยกว่า 3.25 คืองมีผลสอบภาษา งักฤษ เกณฑ์การรับเข้าแผนการศึกษา แบบที่ 2 (มีเรียนรายวิชา) 1. BUU-GET 50 คะแนหขึ้นไป แบบ 2.1 จบโท เกรดเฉลี่ยไม่น้อยกว่า 3.0 2. IELTS 4.5 ขึ้นไป แบบ 2.2 จบตรี เกรดเฉลี่ยไม่น้อยกว่า 2.75 4. CU-TEP 45 ขึ้นไป

กิจกรรมเสริมในหลักสูตรฯ

โรงไฟฟ้าสูบกลับเขื่อนลำตะคองชลภาวัฒนาและโรงไฟฟ้าใต้ดิน

สถาบันวิจัยแสงซินโครตรอน (องค์การมหาชน)

TGA

Rheometer

UV-Vis spectrometer

Material Innovation for Business

Biofilm and Biocomposite Film prepared from Durian Rind and Pineapple Leaf: Synthesis and Characterization

Settakorn Uppasen, Patiparn Boonruam, Soipatta Soisuwan, Christian Antonio, and Piyachat Wattanachai

Research Paper | published online: 19 Mar 2023

Engineered Science, 2023, 22, 846

Heliyon

Received: 26 April 2018 Revised: 19 July 2018 Accepted: 13 September 2018

Cite as: Settakorn Upasen, Piyachat Wattanachai. Packaging to prolong shelf life of preservative-free white bread. Heliyon 4 (2018) e00802. doi: 10.1016/j.heliyon.2018. e00802

Packaging to prolong shelf life of preservative-free white bread

Settakorn Upasen, Piyachat Wattanachai*

Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169 Long-Hard Bangsaen Road,

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING *Asia-Pac. J. Chem. Eng.* 2016; **11**: 34–50 Published online 20 September 2015 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/apj.1940

Research article

Properties characterisation of polycarbonate and multiwalled carbon nanotubes composites prepared by solution technique

Wachirawut Thaithae,¹ Christian Antonio² and Piyachat Wattanachai³*

International Journal of Advances in Science Engineering and Technology, ISSN(p): 2321–8991, ISSN(e): 2321–9009 Vol-6, Iss-2, Spl. Issue-2 Jun.-2018, http://iraj.in MILK TABLET PROCESSING TECHNIQUES FOR NOVEL MILK PRODUCT

Curtin University

¹ANUCHIT KAMLANGDEE, ²SAMART SAIUT, ³SETTAKORN UPASEN, ⁴PIYACHAT WATTANACHAI

Fig. 3. Milk tablets produced by LPC

Research Article

Engineering and Applied Science Research

https://www.tci-thaijo.org/index.php/easr/index

Published by the Faculty of Engineering, Khon Kaen University, Thailand

Natural rubber to replace acrylonitrile butadiene styrene in polycarbonate blends and composites

Patiparn Boonruam¹, Settakorn Uppasen¹, Soipatta Soisuwan¹, Christian Antonio²) and Piyachat Wattanachai*¹

(a)

Songklanakarin J. Sci. Technol. 41 (4), 777-782, Jul. – Aug. 2019

Original Article

Calcium carbonate instead of cornstarch as the releasing agent for powder-free surgery gloves

Piyachat Wattanachai*

Article

Acid-Pepsin Soluble Collagen from Saltwater and Freshwater Fish Scales

Settakom Upasen^{1,a}, Kornrat Naeramitmarnsuk ^C/Christian Antonio², Susan Roces ^{1,a}, Kornrat Naeramitmarnsuk ^C/Christian Antonio², Susan Roces ^{1,a}, ^(%)Héctor Morillas⁴, and Piyachat Wattanachai^{1,b}, ²⁸⁹⁰⁶⁻⁹⁶⁻⁹
Cycloheptanone
mixed triarylsufonate/hexafluoroantimonate salt²⁸⁹⁰⁶⁻⁹⁶⁻⁹
120-92-375
24.5Morillas⁴, and Piyachat Wattanachai^{1,b}, ²⁸⁹⁰⁶⁻⁹⁶⁻⁹
120-92-3^{24.5}
0.5

Article

Comparison of Conventional and Variable Frequency Microwave Curing of SU8 Photoresist: Effects on the Dielectric, Thermal, and Morphological Properties

Group : Catalysts for CO₂ Utilization and Biorefinery.

Methanol and Dimethyl Ether synthesis

Group : Catalysts for CO₂ Utilization and Biorefinery.

CO₂ methanation by nickel based catalysts

Group : Catalysts for CO₂ Utilization and Biorefinery.

Titanium-based catalyst for thermal oxidation of HMF to FDCA (Bio-based monomer)

PI: Nopphon Weeranoppanant (nopphon.we@eng.buu.ac.th)

Selected publications:

J. Flow Chem., 2020, *10*, 353-362. *React. Chem. Eng.*, 2021, *6*(10), 1771-1790. *ACS Sust. Chem. Eng.*, *10*(45), 14724-14734. *React. Chem. Eng.*, 2022, *7*(2), 310-318. *Ind. Eng. Chem. Res.*, 2022, *61*(3), 1322-1331.

International academia and industry project collaboration with:

Area I: Continuous manufacturing and flow chemistry

- Flow catalytic process (photocatalysis, biocatalysis)
- □ Flow chemistry (organic synthesis)
- □ Flow nanoparticle synthesis
- □ Flow chemo-enzymatic synthesis

Area II: Bioprocess and sustainable process development

Reaction engineering for bioprocess
 Biocatalyst immobilization
 Bioprocess scale-up strategies
 Bioprocess integration and intensification
 Technoeconomic and life cycle analysis

Area III: Sustainable separation and extraction

- □ In-line separation
- □ In situ separation with reaction
- Extraction and recovery of bioactive/highvalue compounds from biomass/natural sources

For more information, please visit

